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Preface

In editing the first edition to produce this text, I have tried to keep the ethos of mak-
ing electromagnetism accessible to as many people as I can. With this in mind, I have
kept the fundamental nature of the book the same. I have changed and updated the
examples used where necessary.

The major change is the addition of sections dealing with Maxwell’s equations
and their application. This is an area of electromagnetism that is often considered
difficult. By taking a slightly unconventional route to some ideas, I hope that readers
will gain an insight into the basics of time-varying electromagnetic fields.

The discussion of the Joint European Torus (JET) is still present, but be aware
that the Next European Torus (NET) is due to be operational in 2022, so watch the
Internet.
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’I Introduction

This book is concerned with the study of electrostatic, electromagnetic and electro-
conductive fields — sometimes referred to as field theory or, more simply, electromag-
netism. A knowledge of this subject can help us to explain why a circuit refuses to
behave as designed, why components sometimes break down and what happens in
high-frequency circuits. In studying this area, life is made a lot easier if we can think in
three dimensions. This is usually a case of drawing adequate diagrams and practicing.

Readers used to circuit theory may wonder why they should study such a dis-
cipline. Well, field theory is the study of some of the fundamental laws of Nature.
Indeed, electromagnetism was the first theory to unite the sciences of electricity and
magnetism. The search is now on to find a Grand Unified Theory that unites all the
basic forces of Nature, and that should be of interest to us.

As we progress with our studies, we will meet some names that have become
famous in the field of electrical engineering. Some of these people have had units
named after them, and so will be more familiar than others. Before we begin our
studies in earnest, let us take a moment to pay our respect to some of the researchers
who contributed to electrical engineering as we know it today.

1.1  HISTORICAL BACKGROUND

Electromagnetic field theory is really the result of the union of three distinct sci-
ences. The oldest of these is electrostatics, which was first studied by the Greeks.
They discovered that if they rubbed certain substances, they were able to attract
lighter bodies to them. One of these substances was amber, whose Greek name is
electron —this is where we get the name ‘electricity’. It was in 1785 that French physi-
cist, Charles Augustin de Coulomb (1736-1806), showed that electrically charged
materials sometimes attract and sometimes repel each other. This was the first indi-
cation that there were two types of charge — positive and negative.

In the late 1700s, two Italians were working on the new science of current electric-
ity. One, Luigi Galvani (1737-1798), was a physiologist and physician who thought
that animal tissues generate electricity. Although he was later proved wrong, his
experiments stimulated Count Alessandro Volta (1745-1827) to invent the first
electric battery in 1800. Most of the early experiments in current electricity were
performed on frog’s legs — this was a result of Galvani’s work.

Later, a favourite party trick was to get a group of people to hold hands and then
connect them to a voltaic cell (a battery). The cell produced quite a large voltage,
which then caused current to flow through the guests. This made them jump uncon-
trollably! It wasn’t until 1833 that the British experimenter Michael Faraday (1791-
1867) showed that the current electricity of Volta and Galvani was the same as the
electrostatic electricity of Coulomb. Rather than linking these two phenomena, it
was shown that the current and electrostatic electricity were one and the same thing.
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(Faraday’s contribution is all the more remarkable when it is realized that his theories
were formulated by direct experimentation and not by manipulating mathematics!)

Although the ancient Greeks also knew about magnetism in the form of lode-
stone, the Chinese invented the magnetic compass, and in 1600, William Gilbert
of Gloucester laid down some fundamentals. However, it was not until 1785 that
Coulomb formulated his law relating the strengths of two magnetic poles to the force
between them. Magnetism may have been laid to rest here if it wasn’t for the Danish
physicist Hans Christian Oersted (1777-1851). It was Oersted who demonstrated
to a group of students that a current-carrying wire produces a magnetic field. This
was the first sign that electricity and magnetism could be interlinked. This link was
strengthened in 1831 by the work of Faraday who showed that a changing mag-
netic field could induce a current into a wire. It was a French physicist André Marie
Ampere who first formulated the idea that the field of a permanent magnet could be
due to currents in the material. (We now accept that electrons orbiting the nucleus
constitute a current, and this produces the magnetic field.)

We owe our present view of ‘field theory’ to Faraday who performed many experi-
ments on electricity and magnetism. Although Faraday preferred to work without
mathematics, he did introduce the idea of fields in free-space. This greatly influ-
enced later workers, and it was in the mid-1800s that the British physicist James Clerk
Maxwell (1831-1879) formalized Faraday’s results using mathematics. Among other
things, Maxwell was able to predict the existence of electromagnetic waves. This work
inspired others in the field, such as Oliver Heaviside (1850-1925) who worked on the
first transatlantic telegraph cable as well as predicting the existence of the ionosphere.

The rest, as they say, is history. Due to the work of the German physicist Heinrich
Rudolf Hertz (1857-1894) and the Italian engineer Guglielmo Marconi (1874-1937),
we are now able to communicate over vast distances. We can also use electrical
machinery to make our lives more comfortable. In fact, we owe our current way of
life to the hard work of a number of researchers who continually questioned and
experimented, carefully recording their results and observations.

1.2 ATOMIC STRUCTURE

When we learn to drive a car, we do not necessarily need to know exactly how the
car works. However, if we do understand how the engine works and why the wheels
turn, it can help us to be better drivers. A similar situation occurs with electricity and
magnetism — when we use electricity and magnetism, we seldom have to worry about
exactly how the effects are produced. However, it can make us better engineers if we
have an adequate model of what electricity and magnetism are. This is where we have
to study the structure of the atom.

Figure 1.1 shows the basic structure of the simplest atom, the hydrogen atom. This
atom has one electron that orbits the nucleus containing a single proton. The charge
on the electron is equal and opposite to the charge on the proton and has the value

e=-1.6x10"° C 1.1

with units of coulomb, symbol C.
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Electron cloud

Proton

FIGURE 1.1 Basic structure of a hydrogen atom.

More complex materials, such as amber for instance, have many atoms held in
a crystalline structure. If we rub amber, the friction removes electrons, so leaving
the material positively charged. This is the basis of electrostatic electricity. In some
materials, the electrons are very tightly bound to the nucleus and considerable energy
must be expended to remove an electron. These are insulators.

In a metal atom, the electron in the outermost orbit is not tightly bound to the
nucleus. When a number of metal atoms are close to each other, they form a crys-
talline structure in which these outermost electrons are free to move around; see
Figure 1.2. Now, metals are usually electrically neutral with the number of electrons
exactly balancing the number of protons. If we connect a source of electrons to the
metal, injected electrons will travel through the lattice. As like charges repel, these
electrons force the free electrons away from them. The net effect is to produce a dis-
turbance that travels down the metal. The rate of flow of charge is the electric current.
We should note that the mass of a proton is 1837 times the mass of an electron; thus,
conduction in metals is by electron flow.

Let us now turn our attention to magnetism. As we will see in Chapter 3, a cur-
rent generates a magnetic field. In an atom, we can regard the motion of electrons
around a nucleus as constituting a current. Thus, there will be a magnetic field. In
most materials, the electron orbit is completely random, and so there is no perceptible
magnetic field. However, in some materials, e.g. iron, the electrons can travel in the
same general direction. Thus, each atom becomes a permanent magnet. When these
atoms are part of a crystalline structure, their magnetic fields are randomly distrib-
uted, and there are negligible external effects. However, if we subject the material to
an external magnetic field, the atomic magnets align themselves to the field. When
we remove the field, some of these atomic magnets stay in their new positions, so
producing a permanent magnet.
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Free electrons

Metal atoms with
outermost electron
free to move

FIGURE 1.2 Basic crystalline structure of a metal.

This section has introduced us to some basic ideas about electricity and mag-
netism. Although this discussion has been very simplistic in form, the models we
developed will be useful in later chapters. We will now consider vector notation, and
briefly examine some coordinate systems.

1.3 VECTORS AND COORDINATE SYSTEMS

When we use a thermometer, we read the temperature off a graduated scale. The
temperature of a body is independent of direction (it is simply measured at a certain
point), and so it is known as a scalar quantity. Scalar quantities are those that have no
direction associated with them.

If we push an object, we have to exert a force on it. This force has direction associ-
ated with it — we could push the object to the left, to the right or in any direction we
choose. The force is a vector quantity because it has magnitude and direction.

At this point, we could launch into a discussion of vector theory — addition, multi-
plication, etc. Unfortunately this would complicate matters, and mask the underlying
ideas. Instead, we will avoid vector algebra in favour of discussion and reasoning.
In spite of this, Figure 1.3 shows the standard Cartesian, spherical and cylindrical
systems that we will use as we progress with our studies. (We will use unit vectors in
most of the text, however. This is to help readers get used to vector notation, which
will aid future studies.)
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(a) Az
z
y
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y
(c) A2
()
y

X

FIGURE 1.3 (a) The standard Cartesian coordinate set, (b) the spherical coordinate set and
(c) the cylindrical coordinate set.

1.4 LINE, SURFACE AND VOLUME INTEGRALS

This book assumes that readers are familiar with basic integration and differentia-
tion. However, we will come across many instances where we need the line, surface
and volume integrals. As most readers will not be very familiar with these integrals,
this section deals with their definition and application.

Figure 1.4a shows a line of length /. Let us consider a small incremental section of
the line of length dy. Now, the left-hand end of the line is at the origin of a Cartesian
coordinate set, and the line lies along the y-axis. When we do the line integral, we
effectively add together the lengths of the incremental section as we move it along
the line. This is represented by

1
length = J.dy
0

1
=)o
y
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(a) z

. y
ﬂ.o) 0 zy )
X

ds
(0,0) 0,0)y
(c) z ‘/(0,0) —ay T (m,l)
X
@ av
y

X

FIGURE 1.4 (a) Line integral, (b) surface integral and (c) volume integral.

So, the line integral merely gives us the length of the line. As regards the surface
integral, Figure 1.4b shows a square lying in the xy-plane. Let us take a small incre-
mental section of area ds. This area is given by

ds = dxdy

Now, when we perform a surface integral, we effectively move ds across the whole
of the square. We can split this into two parts: we can integrate with respect to y to
give a line of thickness dx and length /, and then integrate with respect to x to give
the total area. So,

mf 1
area = J. dy [dx
0

0
= '[ldx
0
=ml

The volume integral follows a similar procedure: we consider a small incremental
volume and integrate with respect to x, y and z. This is shown in Figure 1.4c. So, the
volume integral is



Introduction 7

n

Volumezj. J- de dx [dz
0

I
—_
3
ISy

I
=)
=

Although we have confined ourselves to a Cartesian coordinate set, we could have
considered the spherical or cylindrical sets. With these sets, the same basic principal
applies — consider a small incremental section, and then integrate with respect to the
relevant coordinates. Problems 1.1-1.5 should provide readers with practice!

1.5 STRUCTURE OF THIS BOOK

The book is essentially in two parts. The first is concerned with fundamentals and
linking a circuits point of view to a fields approach. It culminates in a discussion of
the various field equations that are relevant to a deeper discussion of radio waves
and electromagnetic fields in general. The second part of the book is concerned
with the solution of the wave equations for coaxial cable and free-space. These wave
equations predict the propagation of waves with distance and time. We are familiar
with such phenomena in the form of radar signals that travel in space and in time.
A study of wave propagation in a planar optical waveguide is used as an application
of Maxwell’s equations.

There is some rather complex mathematics in the later sections of this book,
which can be omitted at a first reading. The important result is that there are waves
that vary with time and distance — travelling waves. These are all around us in the
form of radio waves, and it is a concept that readers would do well to understand.
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2 Electrostatic Fields

Most of us are familiar with the phenomenon of electrostatic discharge: lightning
strikes, sparks from nylon clothing and sparks from nylon carpet. It may be thought
that the study of static electric fields has little to offer the electrical engineer. After
all, we are taught that electrons flow in conducting materials, and so why should we
concern ourselves with the study of static charges? However, as we shall see later in
this chapter, electrostatics introduces several ideas that will be very helpful when we
consider capacitors and, ultimately, transmission lines.

2.1 COULOMB’S LAW

As we have seen in Chapter 1, electronic charge comes in two forms: negative charge
from an electron and positive charge from a proton. In both cases, a single isolated
charge has a charge of 1.6 X 10~ Coulomb. If there are two charges close to each
other, they tend to repel each other if the charges are alike or attract each other if
they are dissimilar. Thus, we can say that these charges exert a force on each other.
Charles Augustin de Coulomb (1736-1806) determined by direct experimental
observation that the force between two charges is proportional to the product of the
two charges and inversely proportional to the square of the distance between them.
In terms of the SI units, the force between two charges, a vector quantity, is given by

F= %r @.1)

where
F is the force between the charges (N)
q, and g, are the magnitudes of the two charges (C)
€ is a material constant (F m™)
r is the distance between the charges (m)
and r is a unit vector acting in the direction of the line joining the two charges
— the radial unit vector

This is Coulomb’s law. The force, as given by Equation (2.1), is positive (i.e. repul-
sive) if the charges are alike, and negative (i.e. attractive) if the charges are dissimilar
(see Figure 2.1). As Equation (2.1) shows, the force between the charges is inversely
dependent on a material constant, ¢, the permittivity. Good insulators have very high
values of permittivity, typically ten times that of air for glass and so the electrostatic
force is correspondingly smaller.

If no material separates the charges, i.e., if they are in a vacuum, the permit-
tivity has the lowest possible value of 8.854 x 102 or 1/36z X 10~ F m~!. (These
rather obscure values result from the adoption of the SI units.) As permittivity has
such a low value, it is more usual to normalize the permittivity of a material to

9
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Electron cloud Proton

FIGURE 2.1 Two separate charges in free-space.

that of free-space. This normalized permittivity is commonly known as the relative
permittivity, €,, given by

& =— 2.2)
&

With this form of normalization, &, ranges from 1.0006 for air to 5-10 for a good
insulator such as glass.

Before we consider an example, it is worth examining Coulomb’s law in greater
detail. One of the first things we should note is that Coulomb’s law incorporates
the inverse square law, i.e., the force is inversely proportional to the square of the
distance between the charges. This relationship is more commonly found when con-
sidering gravitational fields; however, we will meet it again when we study magnetic
fields. Another point worth noting is the presence of 4nr? in the denominator of
Equation (2.1). This is simply the surface area of a sphere and we will see why this is
so when we consider electric flux in the next section.

Example 2.1
Determine the force between two identical charges, of magnitude 10 pC, sepa-

rated by a distance of 1 mm situated in free-space. What is the force if the separa-
tion is reduced to T um?

Solution
The force between two charges is given by Coulomb’s law, Equation (2.1), as

- 1%,
4ner®
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Thus,

10 x107"2x10 x 1072

F= > F
4 xmx8854x10™" x (1x107)

=09x10°r N (repulsive)

If we reduce the separation to 1 pm, the force increases to 0.9 N.

By way of contrast, if we consider a hydrogen atom, the single electron is in
orbit around the single proton at a minimum distance of 5.3 x 10-""m. This gives
an attractive force of 8.2 x 10-8N. Thus, we can see that the electrostatic force in
an atom is very small.

In this section, we have seen that charges exert a force on each other. This force
is repulsive if the charges are alike and attractive if the charges are unlike. This
effect raises the question: how does one charge ‘know’ that the other is present?
To answer this, we will introduce the idea of electric flux.

2.2 ELECTRIC FLUX AND ELECTRIC FLUX DENSITY

One definition of flux is that it is the flow of material from one place to another.
Some familiar examples of flow are water flowing out of a tap or spring, air flowing
from areas of high pressure to low pressure and audio waves flowing outward from a
source of disturbance. In general, we can say that flux flows away from a source and
towards a sink.

If we adapt this to electrostatics, we can say that a positive charge is a source of
electric flux, and a negative charge acts as a sink. We must exercise extreme caution
here. Nothing physically flows out of positive charges — a charge does not run out
of electric flux! What we are doing is adapting the general definition of flux, so that
we can visualize what is happening. If we consider isolated point charges, we can
draw a diagram as in Figure 2.2. (A point charge is simply a physically small charge
or collection of charges. This raises the question of how small is small? The answer
lies with relative sizes. Relative to the distance between the Earth and the Sun, the
height of Mount Everest is insignificant. Similarly, we can regard a collection of
individual charges, arranged in a 10-nm diameter sphere, as a point charge when
viewed from 10 m away.)

Now, what happens to the distribution of electric flux if we bring two positive
charges together? As the charges are both sources of electric flux, the fluxes repel
each other to produce the distribution shown in Figure 2.3. One of the main things to
note from this diagram is the distortion of the lines of flux in the space between the
charges. This causes the force of repulsion between the two charges, in agreement
with Coulomb’s law.

If we now return to Coulomb’s law, we can rewrite it as

1
= a7l @)
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el el
| |

() (b)

FIGURE 2.2 Flux radiation from isolated point charges: (a) a positive charge and
(b) a negative charge.
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FIGURE 2.3 Distribution of flux due to two positive point charges in close proximity.

The first term in Equation (2.3) consists of the electronic charge, ¢,, divided by the
surface area of a sphere, 4772, Thus, ¢,/47r? has units of C m= and would appear
to be a surface density of some sort — the flux density. To explain this, we must use
Gauss’ law (Karl Friedrich Gauss, 1777-1855) which states that the flux through any
closed surface is equal to the charge enclosed by that surface.

Figure 2.4 shows an imaginary spherical surface surrounding an isolated point
charge. Application of Gauss’ law shows that the flux, y, radiating outwards in all
directions has a value of g, — the amount of charge enclosed by the sphere. The area
of the Gaussian surface is simply that of a sphere, i.e., a surface area of 4xr2. Thus,
we get a flux density, D, of

D=1, 2.4)
dnr
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V.0
Gaussian

sphere of
area 4mr?
L—Flux
V,.0 >\/ ,D

Positive
charge

v,D

FIGURE 2.4 Relating to the definition of flux density.

As Figure 2.4 shows, the flux density is a vector quantity, i.e., it has direction and
magnitude. Specifically, D has the same direction as the flux — away from the charge
for a positive charge and towards the charge for a negative charge. Convention
dictates that flux radiating away from a charge is positive, whereas the opposite is
true for flux going towards a body.

Example 2.2

1. Determine the flux radiating from a positive point charge of magnitude
100 pC.

2. What is the flux density at a distance of T0mm from the charge?

3. Determine the flux that flows through an area of 200 mm? on the surface
of a 1-m radius Gaussian sphere.

4. Repeat (3) if a negative charge of the same magnitude replaces the posi-
tive charge.

Solution

1. Application of Gauss” law shows that the flux from the 100 pC charge is
simply the magnitude of the charge. Thus,

v =100pC

2. At a radius of T0mm, the total flux is still 100 pC. However, the surface
area of the sphere is 4nr’> where r is the radius of the sphere. So, as the
radius of the Gaussian sphere is T0mm, we get a flux density of

100 x 107"
4n(10 x 107)

=7.96x10"*rCm™ inaradial direction
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3. We now need to find the flux through a 200 mm? area on the surface of
a 1-m radius Gaussian sphere. So, the flux density at this radius is

100 x107"2

D
4nl*

= 7.96x10"rcm™
As this flux density flows through the 200 mm? surface, the flux is

Y =796x10"2%x200%x107°

=1.59%x107°C

4. We now replace the positive charge by a negative one of the same
magnitude. As the charge is numerically the same, the magnitudes of all
the quantities will be the same. However, as the charge is negative, we
have to put a minus sign in front of the answers. So, the flux from the
charge is

¥ =-100pC

the flux density at T0mm is

D=-796x10"rCm™
and the flux through the 200 mm? surface is
w=-1.59x10""C

This section has shown us that positive electric charges radiate flux, whereas nega-
tive charges attract flux to them. This model enables us to draw field plots such as
that in Figure 2.3. Although such plots can help us in visualizing the field surround-
ing a point charge, we are usually more concerned with the force on a charge

due to the presence of a fixed charge. This is where the idea of an electric field
becomes useful.

2.3 THE ELECTRIC FIELD AND ELECTRIC FIELD STRENGTH

As we saw in the previous section, we can write Coulomb’s law as

q 1
- 4nr? qur

If we use the definition of electric flux density given by Equation (2.4), we can write

F=Lg 2.5)
€
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FIGURE 2.5 Flux, flux density and electric field strength in (a) a positive charge field and
(b) a negative charge field.

In Equation (2.5), we can see that the force on the charge ¢, is directly proportional
to the factor D/e. This factor has units of newton per coulomb, i.e., N C~!. Thus, we
can regard this quantity as the force on a unit of charge. To emphasize this more, we
introduce a new parameter known as the electric field strength, E, defined as

D
E=— 2.6)
€
We can now write Coulomb’s law as
F = 42E
or, more generally,
F =gFE 2.7

From this equation, we can see that the force is directly dependent on the electric
field strength, also known as the electric field intensity. We should note that, as E is
directly proportional to D, it is also a vector quantity.

The field strength is an important parameter in that it introduces us to the idea of
a force field. Figure 2.5a shows an isolated point charge at the centre of a Gaussian
sphere. As this figure shows, electric flux, y, radiates outwards from the charge. Also
shown are the electric flux density and electric field strength vectors.

Let us now introduce a positive test charge of 1C. This charge will experience a
repulsive force acting in a radial direction — the direction of the E field. As this test
charge is 1 C, the magnitude of the force will also be the magnitude of the E field.
Thus, the lines of flux are also the lines of force emanating from the charge. A simi-
lar situation arises with a negative charge: Figure 2.5b. So, we can say that a force
field surrounds each charge, and that the field is repulsive if the charges are alike, and
attractive if the charges are dissimilar.
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Example 2.3

Determine the flux density and electric field strength at a distance of 0.5m from
an isolated point charge of +10 pC. If an identical charge is placed at this point,
determine the force it experiences. Assume that the charge is in air.

Solution

Let us place the point charge at the centre of a Gaussian sphere of radius 0.5m.
Now, from Gauss’ law the total flux through the sphere is equal to the enclosed
charge, i.e.,

v =10uC
The area of the Gaussian sphere is 472, and so the flux density at 0.5m is

_10x10°
© 4n0.5

=3.2x10°% Cm™

The strength of the electric field at this radius is

D
E=—r
=)

_32x10° .
T 8.854%x107"2

=3.6x10°r NC™

Now, if we introduce a 10 pC point charge at this distance, the charge will experi-
ence a repulsive force of

F=qFE
=10x10%%x3.6x10°%r
=3.6r N

As a matter of interest, if we halve the distance, we get
_10x107° ,
410.25*
=12.7%10°r Cm™

_127x107° .
8.854x107"

=1.44x10°r NC™!



Electrostatic Fields 17

and
F=144%x10°x10%x107°r

=1.44r N

This example has shown that, in spite of the small values of charge, and the large
distance between them, the electrostatic force can be quite high.
We can now write three, equivalent, forms of Coulomb’s law

_ 41422 rN
4mer
D
F:iqz N
€
and
F=¢EN
where electric flux density is
p=-1 ~rCm™
dnr
and electric field strength is
g=2- 9 ,nc
€ Aner

Let us now turn our attention to electric potential, a term that is usually associated
with circuit theory.

2.4 ELECTRIC POTENTIAL

We often come across the term potential when applied to the potential energy of
a body or the potential difference between two points in a circuit. In the former
case, the potential energy of a body is related to its height above a certain refer-
ence level. Thus, a body gains potential energy when we raise it to a higher level.
This gain in energy is equal to the work done against an attractive force, gravity
in this example. Figure 2.6a shows this situation.

As Figure 2.6a shows, the body is placed in an attractive, gravitational force field.
So, if we raise the body through a certain distance, we have to do work against
the gravitational field. The difference in potential energy between positions 1 and
2 is equal to the work done in moving the body from 1 to 2, a distance of / metres.
This work done is given by

Fxl=mx9.81xl
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FIGURE 2.6 (a) Potential energy in a gravitational field and (b) potential energy in an
electrostatic field.

where m is the mass of the body (kg) and 9.81 is the acceleration due to gravity
(m s72). (Although the effects of gravity vary according to the inverse square law, the
difference in gravitational force between positions 1 and 2 is small. This is because
the Earth is so large. Thus, we can take the gravitational field to be linear in form,
and so this equation holds true.)

In an electrostatic field, we have an electrostatic force field instead of a gravita-
tional force field. However, the idea of potential energy is the same. Let us consider
the situation in Figure 2.6b. We have a positive test charge of 1 C at a distance d, from
the fixed negative charge, —q,. This test charge will experience an attractive force
whose magnitude we can find from Coulomb’s law. Now, if we move the test charge
from position 1 to position 2, we have to do work against the field. If the distance
between positions 1 and 2 is reasonably large, the strength of the force field decreases
as we move away from the fixed charge. Thus, we say that we have a non-linear field.

As the field decreases when we move away from the fixed charge, let us move the
test charge a very small distance, dr. The electric field strength will hardly alter as
we move along this small distance. So, the work done against the field in moving the
test charge a small distance dr will be given by

work done =force X distance
=—-Fxdr

=—1xExdr (2.8

(The presence of the negative sign is due to the fact that we are moving away from the
charge, whereas the electrostatic force acts towards the charge, i.e., in the opposite
direction.)

We can move from position 1 to position 2 in very tiny steps so that the E field
hardly varies with each step. With each step we take, we will do a small amount of
work against the field. To find the total amount of work done, and hence the potential
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difference, we can integrate Equation (2.8) with respect to r, with ¢, and d, as the
limits. Thus,

dy
total work done = —J.E dr
d

dy
S > dr
dner
d

dy 1
=+7QI J.jdr
4T[€d r

/S L
dne |d, d,

In electrical engineering, we use the symbol V for potential. Thus, the potential
difference between positions 1 and 2 is

qi 1 1
/PN L 2.9
. 4n£{d1 dz} @9

(Although the units of work are joules, we tend to use the volt (named after Count
Alessandro Volta, 1745-1827, the Italian physicist who invented the first electric
battery in 1800) as the unit of potential.)

Let us take a moment to examine Equation (2.9) more closely. In particular,
let us look at the term in the brackets. The major question is whether this term is
positive or negative. If d, and d, are of the same order of magnitude, we might find
it difficult to decide. However, if we make d, very, very small, and d, very, very
large, the term in the brackets should be positive. As a check, let us take d, = 0 and

d, = o0. Thus,
g J1 1 }
Vo= {-
2 4n£{0 oo

q
= ———q00 — 0
4ne { ;
_a
4ne
Although this quantity is clearly very big, it is also very definitely positive. This con-
firms that we have to do work against the field in moving the test charge away from
the negative charge ¢,.
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Before we consider an example, let us return to Equation (2.9) again. We can
recast this equation as

Vi—v, =1 1 a1
4ne dl 4T[8d2

from which we can infer that

=21 (2.10)
4ne d]
and
=4 L @.11)
4ne d2

These voltages are the absolute potentials at points 1 and 2, respectively. We can also
find these potentials by moving the test charge from infinity to positions 1 and 2.
We must take great care with the minus sign when calculating the absolute potential.

Example 2.4

Determine the absolute potential at a distance of 0.2m from an isolated point
charge of 10 pC. Hence, determine the potential difference between this point and
another at 10m from the charge.

Solution

The absolute potential is defined as the work done against the field in moving a
positive 1 C test charge from initially to a point in the field. So, the small amount of
work done, dV, in moving distance dr is

dV = —force x dr
=—1xXEXxdr

=—E dr
(Note that this gives

_4av
dr

E=

and so E can have alternative units of V. m='. We will return to this very important
point later.)

Thus, the total work done in moving the charge from infinity to 0.2 m from the
fixed charge, the potential, is
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-6
J‘dv 10 x10 10x10™
4n80r

Therefore,

02

_10x10”°
47'[80

1

r

oo

_10x10™ 1
4ng, 02

=4.5%10° Vat0.2 m
By following a similar procedure, the potential at 10m from the charge is
V=9x10’V

Thus, the potential difference between 0.2 and 10m is
Vi, =4.41x10°V

Before we continue, it is worth stressing again that the units of the E field are also V
m-~'. We will use these units when we come to consider capacitors in Section 2.9.

2.5 EQUIPOTENTIAL LINES

Let us consider the three paths A, B and C shown in Figure 2.7a. All of these paths
link points 1 and 2, but only path A does so directly. Now, let us take the circular
lines in Figure 2.7a as the contours on a hill. In moving from position 1 to position 2
by way of path A, we clearly do work against gravity. The work done is equal to the
gain in potential energy which, in turn, is equal to the gravitational force times the
change in vertical height. (This is shown in Figure 2.7b.)

Now let us take path B. We initially walk left from position 1, around the contour
line, to a point directly below position 2. As we have moved around a contour line,
we have not gained any height, and so the potential energy remains the same, i.e., we
have not done any work against gravity. We now have to walk uphill to position 2. In
doing so we do work against gravity equal to the gain in potential energy. This gain
in potential energy is clearly the same as with path A. (Although we have to do more
physical work in travelling along path B, the change in potential energy is the same.)
If we use path C, the same argument holds true. So, we can say that the work done
against gravity is independent of the path we take.

Let us now turn our attention to the electrostatic field in Figure 2.8. As with the
contour map, we have three different paths. As we have just seen, we do no work
against the field when we move in a circular direction. We only do work when we
move in a radial direction. Thus, the potential difference between points 1 and 2 is
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(a)

FIGURE 2.7 (a) Contour map for a circular hill and (b) side view of hill.

independent of the exact path we take. This implies that we do no work against the
field when we move around the plot in a circular direction. Thus, the circular ‘con-
tours’ in Figure 2.8 are lines of equal potential or equipotential lines.

We should be careful when using the term equipotential lines. This is because we
are considering a point charge, and so the equipotential surfaces are actually spheres
with the charge at their centre. As we are not yet able to draw in a three-dimensional
holographic world, we have to make do with two-dimensional diagrams drawn on
pieces of paper!

Example 2.5

An isolated point charge, of 20 pC, is situated in air. Plot the 1, 2 and 3V
equipotentials.

Solution

To plot the equipotentials, we need to find the radius of the 1, 2 and 3V potential
spheres. Now, the absolute potential of a point in an E field is

_q 1
4ngy r
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(a)

-l

FIGURE 2.8 (a) ‘Contour’ map for a positive point charge and (b) variation in potential as a
function of distance from charge.

and so,
r= 4
dneyv
Thus,
ny =18 cm

rny=9cmand ry=6cm

These lines are plotted in Figure 2.9.

2.6 LINE CHARGES

So far we have only considered point charges. This is very useful when introducing
the fundamental laws we have considered. However, we rarely meet point charges in
reality. Instead, we come across lines of charge, charged surfaces and charged objects.
Thus, we have to deal with charge distributions in one, two and three dimensions.
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FIGURE 2.9 1,2 and 3V equipotentials surrounding a +20 pC point charge.

This is where things tend to get a little complicated, as we have to think in three
dimensions. In such cases, it is essential to draw diagrams that help us visualize the
situation.

Let us consider a long piece of wire that is charged by some means. Electric flux
will radiate outwards from this line of charge and the direction of this flux will be
away from the line in a radial direction. If we only consider the central part of the
wire, we can ignore what happens at the end of the line and so the flux distribution
is as shown in Figure 2.10.

If we apply Gauss’ law, we can say that the total flux emanating from the wire
is equal to the charge enclosed by an imaginary Gaussian surface. In this case,
the Gaussian surface will be an open-ended tube with the wire placed along the
central axis of the tube (Figure 2.10). To find the flux density, and hence the electric
field strength, we can use Gauss’ law or we can use a more rigorous mathematical
approach. Both techniques are presented here.

Electric flux

Gaussian surface

N A

FIGURE 2.10 Radiation of electric flux from a line of charge.
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2.6.1 Gauss’ Law APPROACH

Let us consider the line charge and Gaussian surface as shown in Figure 2.10.
The charge is distributed along the length of the wire, and so let us introduce a line
charge density given by the total charge, O, divided by the length of the line, L, i.e.,

p=2 @.12)

If we consider a unit length of wire (1 m), we get a total flux of

y=pxIC 2.13)

Now, the flux density is the flux divided by the surface area of the Gaussian surface.
As the Gaussian surface is a tube, the surface area is the circumference of the tube
times the length, i.e.,

area = 2mr X[

Thus, the density is

p=", 2.14)
2nr
and the electric field strength is
E=P, (2.15)
2ner

The equipotential surfaces will be coaxial tubes that have the wire along the centre
line of the tubes (Figure 2.11a). So, if we move in a direction parallel to the wire, we
do no work against the field indicating that we can ignore travel along the wire. Thus,
we can draw a two-dimensional plot as shown in Figure 2.11b.

If we move a 1C test charge a small distance in the E field, the small amount of
work done is

dV=-E dr

Thus, the total amount of work done against the E field in moving the test charge
from infinity to a point in the field is

\4 R
J.dV S
' 2ner
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Equipotential
tubes

Equipotentials

Line of
(@) charge

(b)

FIGURE 2.11 (a) Equipotential tubes surrounding a line charge and (b) two-dimensional
plot of equipotentials.

Unfortunately, solution of this equation results in an infinite potential! (Readers
might like to try this for themselves.) The way round this is to set the potential to
zero at a distance r, where r tends towards infinity. Thus,

\
fav=-
0

as r — oo. Fortunately, we are more usually concerned with potential differences, and
so the dummy variable r, in Equation (2.16), cancels out as shown in the following
example.

P gy (2.16)

R
2ner
.

Example 2.6

A 10-m long wire has a charge of 20 pC along it. Determine the flux density and
the electric field strength at a radial distance of 0.5m from the wire. In addition,
find the potential difference between points at 0.5 and 1.5m from the wire.

Solution
The line is 10m long with a charge of 20 pC. Thus, the charge density is

_20x107°
10

P

=2uCm™
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Let us now consider a section of the wire length / metre. The charge on this length is

g=2%x10"°x1
=2x[uC

We want to find the flux density at a radius of 0.5 m from the wire. The surface area
of the Gaussian surface will therefore be

area =21 x 0.5x [ m>

and so the flux density is

_2><10’6><lr
2nx0.5%!

=6.4x107r Cm™

(It is worth noting that the length of the wire cancels out, and so we could have
taken any length we liked.) The electric field strength is given by

D
E=—
&

=72x10*F Vm™

=72r kVm™

As regards the potential difference, we can use Equation (2.16) to give

2%x107°
Vos = - (In r=1In 0.5)
and
Vo= 2900 e n1s)
'3 2ne ’

Vos=Vis == ((In r=1n 0.5)—(In r—In 1.5))

-6
= 2210 (In1.5-1n 0.5)
e

2%x107°
2ne

=40 kV

In3
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2.6.2 MATHEMATICAL APPROACH

In the previous section, we used Gauss’ law to examine the field around an infinitely
long charged line. Here, we will split the line into infinitesimally small sections, so
that we can use Coulomb’s law as applied to point charges.

Let us consider a small section of the line as shown in Figure 2.12. The charge on
this section is p; X dz and so the flux density at point P is

p1 xdz
4mir?

D= (2.17)
We should note that this is a vector quantity acting at an angle to the axis of the line.
By taking the origin as shown in Figure 2.12, the line stretches from —oo to +o0.
Thus, we can see that the line is symmetrical about the origin. Now, D can be split
into a radial component, D,, and a vertical component, D_ given by

D, =P % g, 2.18)
s
and
= Pixfz cos0z 2.19)
nr

These flux densities are due to an incremental section of the line. So, to find the total
flux density, we can integrate Equations (2.18) and (2.19) with respect to z between
the limits of —oco and +o0. Unfortunately, as we move up and down the line,  and 6
vary as well. If we change variables to integrate with respect to 6, we need to express
z and rin terms of €. So, to return to Equation (2.18), we have

p1 X dz

sinOr

D, =

FIGURE 2.12 Field at a point P due to a small section of line.
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Now,
tan@ = R
21
which, after differentiation, becomes
de R
=—dz
cos’0 z
and so,
2
21 d@
dz =
R cos’ 0
Thus, Equation (2.18) becomes
. 2
D, =P xS0 T3 4,

r

4n r* " Rcos® 6
Now, cos 8 = z,/r and so we can write

2
D, =&xsin9xgd9 r
4n R cos” 6

=P Gn6do r (2.20)
4nR

To find the total radial flux density, we need to integrate this equation with respect to
0. As this is an infinite line, the limits of @ are 0 and =. Thus,

T

j sin6deé r

p,=-P
4miR

-_ P, (2.21)
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This is exactly the same as the radial field given by Equation (2.14). However, what
about the flux density in the z-direction? Well, the line is symmetrical about z = 0.
Thus, there will be an identical component of D, acting in the opposite direction, due
to an incremental section at z = —z,. Hence, we can say that the axial component of D
will be zero. (Readers can confirm this for themselves by integrating Equation (2.19)
with respect to 6.) As regards the E field, and the potential, we can follow an identical
procedure to that used in the previous section.

So, this method has resulted in exactly the same result as that obtained using Gauss’
law. Although this derivation has involved us in a considerable amount of work, it has
introduced us to the question of symmetry, and the resultant simplifications it can bring.

2.7 SURFACE CHARGES

The last section concentrated on line charges that we find when we have a charged
wire. We also come across surface charges, such as those on capacitors and electro-
static precipitators. In such cases, we can again use a mathematical approach, or we can
apply Gauss’ law. In common with the previous section, we will use both approaches.

2.7.1 Gauss’ LAw ApPPROACH

Let us consider the circular charged plate shown in Figure 2.13. This plate has a certain
charge spread over its surface. To simplify the analysis, let us assume that the charge
distribution is uniform and that there are no edge effects. Now let us consider a small
area of the plate. This area will contain a certain amount of charge, dQ, given by

dQ =p, ds (2.22)
z
Electric flux
/ %
I Yy
I
Electric flux

FIGURE 2.13 Radiation of electric flux from a charged surface.
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where p, is the surface charge density in C m=, and ds is the area of the section.
Flux emanating from this area will flow upwards and downwards to occupy a cylinder.
(There will only be a vertical component of flux because any horizontal flux will cancel
out due to symmetry. This is a similar situation to that which we met when we exam-
ined line charges.) By applying Gauss’ law, we see that the total flux out of the cylinder,
in both directions, must equal the enclosed charge. So, half the flux flows upwards and
half flows downwards. Thus, the flux density at any height above the disc is

a0

D, =
2ds

psds
= 3
2ds

Ps
=71
2

(2.23)

and the electric field strength is

E =P ; (2.24)
2€4€,

The important thing to note here is that the E field is independent of the distance
from the disc. This is a consequence of having the flux flow in a cylindrical tube.

As regards the potential, we have equipotential surfaces parallel to the disc. These
surfaces will have the same area as the disc. If we take zero potential at infinity, the
absolute potential at a distance z from the disc will be

jdv
2808

Therefore,

= ps
2€,€,

(2.25)

This is an example of a linear field because the E field is constant regardless of
the distance from the disc. We should remember, however, that this result has only
appeared because we have a uniform charge density.

Example 2.7

Determine the flux density, and hence the electric field strength, produced at a
distance of 1m from the centre of a 1 m? square of insulating material that has a
total charge of 10 pC evenly distributed over it. Assume that the square is in air.



32 Introduction to Electromagnetism

Solution

Let us place the square at the centre of a set of Cartesian axes as shown in
Figure 2.14. The square lies in the xy-plane, and so the electric flux will act
equally along the positive and negative z-axis. As we have just seen, the electric
flux density is independent of the exact shape of the material and is given by
Equation (2.23) as

Pi
D, =—
2Z

Thus,

10x107"2
=7z

D, 5

=5z pCm™

As regards the E field, we can use D = € E to give

_ 5x107™?
P T 8854x1072 ¢

=056 zVm™

\z

Al
%

Electric flux

X

FIGURE 2.14 Radiation of electric flux from a charged square.



Electrostatic Fields 33

2.7.2  MATHEMATICAL APPROACH

As we have previously seen, we can only apply Coulomb’s law, and hence use our
usual expressions for D and E, when considering point charges. However, we have a
surface charge, and so how can we analyze this situation? The solution is to consider
a small section of the disc, calculate the flux density due to the charge on this small
section and integrate the result over the area of the disc. (Problem 1.2 gives more
information about the integration method used in the following derivation.)

As Figure 2.15 shows, let us consider a small section of a disc. The area of this
small section is

ds=rd¢ dr (2.26)

ap

(@)

(b)

_‘{[l____ I

FIGURE 2.15 (a) Field at point P due to a small section of a charged disc and (b) side view.
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if d¢ is expressed in radians. (This is a direct consequence of expressing d¢ in radians.
The circumference of the disc is 2nr, and this encloses an angle of 360°, or 2z radians.
So, the length of an arc that subtends an angle of 180° or & radians, is wr. Thus, the
length of an arc is equal to the product of the angle (in radians) and the radius of the arc.)

If we have a charge spread over the surface of this disc, the charge on this small
section is

dQ = p,ds 2.27)

which we can take to be a point charge if ds is very small. This charge will produce a
small component of the flux density acting in the direction shown in Figure 2.15a. So,

dD = psds

o (2.28)

We can resolve this flux density into horizontal and vertical components, and then
integrate with respect to @ between the limits 0 and 2x. This integration will describe
aring of thickness dr and radius r. It is then a matter of integrating with respect to r to
map out the whole of the disc. However, when we integrate with respect to @, we find
that the horizontal component of D will be zero. This is a consequence of the sym-
metry of the disc, similar to the symmetry we met in the previous section. (Readers
can check this by performing the integration for themselves.)

So, because of symmetry, we only need to consider the vertical component of the
flux density. Thus,

pd
dD, =
 4nl?

_DPdsz
an? 1°

Now, from Equation (2.26), we can write

psrd¢ dr z

dD. =
T4 1°

(2.29)
The total flux density is obtained by integrating this equation with respect to ®@ and r.
We can perform integration with respect to @ very easily because [ does not vary as
we move in a circular direction. (The integration of ds with respect to ® describes
aring of radius r.) So, the flux density due to a ring of thickness dr and radius r is

_ prdr zJ‘
= d
dD 4nl® 0z

psr dr z
=27
4nl?

psrdr z
= Tz (2.30)


http:Qps(2.27
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We now need to integrate Equation (2.30) with respect to radius to find the total flux
density at the point P. Unfortunately, as we perform the integration, the length / varies
as the radius goes from 0 to R. Thus, we need to express / in terms of r prior to inte-
grating with respect to r. So,

(r +z
R
_pz o -l z
- 2 2 > 1/2
(r*+2) .
e,
p=bl__ 1 2.31)

We can perform a very simple check on this equation by letting z — oo (i.e. find
the flux density at infinity). Under these circumstances, we would expect the disc
to approximate to a point charge, and so the flux density should approximate to
Equation (2.4). So, by using the binomial expansion of the term in brackets, we get

pz(1 1 1R
D, = Sy —— |z
2 (z z 227

_pi 1R
2 2z 77
R2
=p;,—52
Ps 472
_O0 R

TR 47 °
0

Anz?

Z

which is the equation for the flux density resulting from a point charge.
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We can perform another simple check by letting R — oo. If we do this, we find
from Equation (2.31), that

D,—>&

2

which is the same as that found using Gauss’s law, Equation (2.23).

So, we have successfully shown that the flux density from a surface charge
distribution reduces to that of a point charge, if the distance from the surface is large
enough. We have also shown that the mathematical approach gives the same result as
that obtained using Gauss’ law.

2.8 VOLUME CHARGES

The previous two sections have introduced us to line and surface charge densities.
However, we live in a three-dimensional world (four if you count time) and so we
will often meet charged volumes. When considering a volume charge density, we can
make good use of Gauss’ law to replace the volume charge by a point charge at the
centre of the volume.

As an example, let us consider a sphere with a charge evenly distributed throughout
its volume, as shown in Figure 2.16a. To analyze this situation, we could consider a
small section of the sphere, and perform an integration to map out the whole of the
volume. However, this will involve us in a considerable amount of work. An alterna-
tive is to apply Gauss’ law and replace the volume charge density by a point charge
at the centre of the volume.

So, if the sphere has a total charge of coulomb distributed throughout the volume,
we can replace the sphere by a point charge, placed at the centre placed the centre of
the sphere, of magnitude Q. This is shown in Figure 2.16b. It is then a simple to find
the flux density, etc., at any distance from the surface of the sphere.

z z
D, D,
Charged sphere
P with a fotal charge P
of @ coulomb

(a) (b)

FIGURE 2.16 (a) Field at point P due to a charged sphere and (b) simplification due to
application of Gauss’ law.
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Example 2.8

A solid sphere, of radius 0.25m, has a charge of 10 pC evenly distributed through-
out its volume. By using Gauss’ law, determine the flux density at point 1 m from
the centre of the sphere.

Solution

We have to apply Gauss’ law to the sphere. Now, the total charge contained
throughout the sphere is 10 pC. So, we can replace the sphere by a point charge
of 10 pC placed at the centre of the sphere. We now need to determine the flux
density at a distance of 1 m from this charge. Thus,

—12
D = 10x 1(3
4nl

=087 pCm™

Although we could have considered the flux due to a small incremental volume
of the sphere, and then integrated throughout the volume of the sphere, the math-
ematics would be very complicated indeed. (Interested readers can show this for
themselves, but it is not recommended!)

2.9 CAPACITORS

Most of us are familiar with capacitors as circuit elements and, as such, we seldom
need to examine their structure. What is not often realized is that a capacitor is
formed whenever we have two conductors close to each other. Such a situation fre-
quently occurs in electrical engineering, but the effect does not make itself felt until
we reach high frequencies.

In this section, we will consider parallel plate capacitors, coaxial cable, twin
feeder and microstrip line. All of these capacitors are commonly found in electrical
engineering. We begin our study by examining the parallel plate capacitor.

2.9.1 PARALLEL PLATE CAPACITORS

Capacitors come in a variety of shapes and sizes: from big electrolytic capacitors for
smoothing the output of power supplies to small value disc ceramic capacitors for use
in high-frequency circuits. All types of capacitor are based on the simple structure
shown in Figure 2.17.

For convenience, we will consider a circular plate capacitor with R being the
radius of each plate. When the bottom plate of the capacitor has a charge on it, this
charge induces an equal and opposite charge in the top plate. Thus, if the bottom
electrode has a charge of +Q on it, the charge on the upper plate is —Q.

Now, as we saw in Section 2.7, if the charge is evenly distributed over the plate,
the flux is equally divided into upward and downward flux. So, flux flows upwards
through the dielectric from the positively charged lower plate. As we have an upper
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Lead Metal disc
of radius A -Q

“ RERN

Upper plate

Electric
Lower plate +Q
(a) (b)

FIGURE 2.17 (a) Basic structure of a parallel plate capacitor and (b) flux distribution in a
parallel plate capacitor.

plate with a charge of —Q on it, flux in the upper half of the capacitor will also flow
upwards. Thus, the total flux in the capacitor flows in the positive z-direction as
shown in Figure 2.17b.

As we have two equal sources of flux acting in the capacitor, the total flux density
in the capacitor is

2
(2.32)
Q
T
and so the electric field strength is
Q

E=—"—+ 2.33
T ek (2.33)

Thus, the potential difference between the top and bottom plate is

\%]

de: 0 >
o€, R

Vi

dl2

[ -

—d/2

and so,

LE __‘G =:§2:2(‘i+_Ci]
EEMR 2 2

Q0 d

&6, R*
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or, more generally,

__ 0
£0&,mR*
We can rearrange this equation to give
£o&,MR?
0=""y
d

which shows that the stored charge is directly proportional to the voltage across the
capacitor plates. The constant of proportionality is the capacitance given by

_ EpE, X area
d

C (2.34)

and so we can also write
o=CV (2.35)

Both equations should be familiar to most readers.

2.9.2 CoaxiaL CABLE

Coaxial cable is very widely used in everyday life: a familiar example is the lead that
connects the aerial to the television set. Figure 2.18 shows the basic structure of this
type of cable.

Under normal circumstances, the inner conductor of the cable carries the signal,
or voltage, whereas the outer conductor is usually earthed. The advantage of this
structure is that any external interference has to pass through an earthed conductor
before it reaches the signal. In effect, the outer conductor shields the signal from any
external interference.

Now, if the inner conductor is at a certain potential above the earthed shield, we
will have a capacitor. To find the capacitance, we need an equation that links the
potential difference between inner and outer conductors to the charge on the inner
conductor.

As we are dealing with a length of cable, let us assume that the inner conductor
has a charge of p, coulomb per unit length. This charge will produce flux in a radial
direction similar to that which we met in Section 2.6. The Gaussian surface in this
instance is a tube of radius r, thickness dr and length /.

So, the flux flowing through this surface is

y=pxl

As this flux flows in a radial direction, the flux density through the Gaussian surface is
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Dielectric

Outer conductor
of braided copper
(usually earthed)

Inner conductor
of solid copper

() (b)

FIGURE 2.18 (a) Basic structure of coaxial cable and (b) end view of coaxial cable.

p=P
2nrl
or
D, = &r
2nr

and so the electric field strength at this radius is

=P
2NEYE, T

Now, the thickness of the Gaussian surface is dr, and so the potential difference
across the surface is

dV =—E.dr

oy,
2T[£()£r r
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The potential difference between the inner and outer conductors is therefore given by

\4 a

jdv: - P '[1 dr
2nepE, Jr

0 b

and so,

P

V=——"—| Inr
2nEHE,

_ Plln(b)
2MEYE, a

= 0 ln(b)
2neye,l a

Thus, the capacitance is

o0
|4

2MEYE,

= (b) x length
In| —
a

and so the capacitance per unit length is

_ 2ngE,

C,— l
( )
a

Fm™

(2.36)

2.37)

We should note that the capacitance per unit length is directly dependent on the
length of the cable. So, if we double the length of the cable, the capacitance also

doubles.

Example 2.9

A 500m length of coaxial cable has an inner conductor of radius 2mm and an
outer conductor of radius 1 cm. The relative permittivity of the dielectric separating
the inner and outer conductor is 5. Determine the capacitance of the cable. If the
inner conductor is at a potential of 1kV above the outer conductor, determine the

maximum value of the E field in the dielectric.
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Solution

We want to find the capacitance of the cable. So, we can use Equation (2.36) to give

C= an(:r
ln(f)
a

_ 2mx8.854%x107"% x5

—2
1n(10 ><10‘3J
2

C’=173pFm™

xlength

x 500

and so,

As regards the E field in the dielectric, we have seen that

=P
2MEYE, T

In order to find E, we need to know the charge per unit length, p,. As Q = CV,
Equation (2.35), we can write

p1=C’V
=173x107"% x1x10°

=173 nCm™

As the E field is inversely proportional to radius, the maximum field occurs at the
surface of the inner conductor. Thus,

173%x107°
E’/‘max = -12 -3
21t x8.854 107" x5%x2x10

=311 kVm™

This is quite a considerable field strength, and one that may cause the dielectric to
break down. Chapter 6 deals with this in greater detail.

2.9.3 TwiN Feeper

In communication, twin feeder is often used as connecting wire between short-
wave transmitters and their aerials. We also find twin feeder in power transmission
systems and telephone lines. As Figure 2.19 shows, twin feeder generally consists of
two parallel wires held apart by some means.

Let us assume that the left-hand conductor has a charge per unit length of p,C m~".
This charge will induce an equal and opposite charge on the right-hand conductor.
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Gaussian
tube

Radius @

FIGURE 2.19 Basic structure of twin feeder.

The flux emanating from the left-hand conductor does so in a radial fashion, and so
we can take a Gaussian tube of length /, similar to that which we used in Section 2.6.

The charge on a length of the left-hand conductor is p, X [ coulomb. Thus, the total
flux through the Gaussian surface is

v =p xlI (2.38)

The area of the Gaussian surface is 2nr X [ and so the flux density at a radius r is

_ pixl
" 2mrxl

r

- P 2.39
2nr d ( )

Thus, the electric field strength at this radius is

E =P, (2.40)
27{807’

We also have a right-hand conductor with an equal and opposite charge.
The radial electric field from this conductor will have the same direction as the
field due to the left-hand conductor. The electric field strength due to the right-
hand conductor is

Pi
E =P 2.41
neo(d—r)" @4D
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and so the total electric field strength is

E =P 4 P, (2.42)
2negr  2mey(d—r)

To find the potential between two lines, we must integrate this equation with respect
to radius. So,

Va

JdV: P J LS S
2ne, ro(d-r)

Vi d—a

Therefore,

_pl
Vo=-Vo=——| Inr—In(d-r
b 27[80 ( )

d-a

= %(lna—ln(d—a)+lna—ln(d—a))

_pl
=P (lng—1n(d-
ngo(na n(d -a))

- P _
= e, (In(d - a)+1Ina)

=p,1n(d—a)
nEy a

= an( d-a ) x length (2.43)
nEy a

So, the capacitance of the arrangement is

&y
C=——"—-xlengthF
ln‘(d - a)/a‘ o

or

’ s -1
c=—"T% __F 2.44
ln‘(d—a)/a‘ " @49

If the separation of the conductors is significantly greater than the diameter of the
conductors, Equation (2.44) reduces to
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C’'= Fm™ (2.45)

Q|
N———|

Example 2.10

A 200m length of feeder consists of 2-mm radius conductors separated by a
distance of 20 cm. Determine the capacitance of the arrangement.

Solution

As the distance between the conductors is very much greater than the radius of the
conductors, we can use Equation (2.45) to give

€y
ln(i)
a

_ mx8.854x107"
In(20x107/2x107)

C’'=

=6pFm™

=1.2 nF for the 200 m length

2.9.4 WIrRe OVER GROUND — THE METHOD OF IMAGES

In the last section, we studied twin feeder. However, we often come across conduc-
tors placed over a ground-plane. Under these circumstances, we can make use of the
method of images to find the capacitance of the arrangement.

Figure 2.20a shows the situation we are considering. As we can see, we have a
line above an infinite ground-plane. (A ground-plane is simply a large conducting
area that is earthed. The Earth itself is one example. Another example is the use
of double-sided printed circuit boards.) To analyze this situation, we can intro-
duce an imaginary conductor on the other side of the ground-plane, as shown in
Figure 2.20b.

As the ground-plane is exactly half-way between the two conductors, it is effec-
tively lying along an equipotential line. This means that we can remove the ground-
plane, so leaving us with the twin feeder we have just considered. As we can see from
Figure 2.20c, we can consider the two-wire situation as being made up of two single-
wire/ground-plane arrangements in series. Thus, the capacitance of the single con-
ductor over a ground-plane is simply twice that of the twin feeder. We can now write

2T[5()
d

——a

2
a

C'= Fm™ (2.46)

In
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Conductor
of radius &
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Ground 5

/
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(a) (b)

‘Real’ capacitor

Image capacitor

(c)

FIGURE 2.20 (a) Wire over ground, (b) image conductor for wire over ground and (c) equiv-
alent circuit of wire and image.

or

C’ = 27-[80 -1

In(d/2a) (@47)

where d/2 is the height of the conductor above the ground-plane.

Example 2.11

A high-voltage power line consists of 1-cm radius copper wire placed 25m above
the ground. Determine the capacitance that the line has to the ground.

Solution

The height of the wire above the ground is significantly greater than the radius of
the wire, and so we can use Equation (2.47) to give
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’ _ 21.[80 -1
In(d / 2a)

_ 2nx8.854x107?
In(25/2x107)

=7.8pFm™

2.9.5 MicrosTrIP LINE

When constructing electronic circuits, we often use double-sided printed circuit
board. When using this type of board, the upper layer generally carries the signal,
while the bottom layer is usually earthed. Under these circumstances, the signal
line and earth form a capacitor. When operating at low frequencies, the effect is
not very pronounced. However, at high frequencies, the capacitance has a greater
effect.

Figure 2.21 shows the cross section through a double-sided circuit board.
In common with the previous example, we can make good use of the method
of images to produce a parallel plate capacitor. Thus, the capacitance of the
microstrip will be

C= 2€y€, X area
2h
or
C'= L’ZW Fm™ (2.48)

£

7
Ground plane

FIGURE 2.21 Cross-section through a double-sided printed circuit board.
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If the width of the track is much smaller than the thickness of the board, we can approx-
imate the distribution to that of a cylindrical wire over a ground-plane. This is identical
to the situation we met in the last section. Thus, the capacitance per unit length is

2€0€,

A 3-mm wide track is etched on one side of some double-sided printed circuit
board. The thickness of the board is 2mm, and the dielectric has a relative
permittivity of 5. Determine the capacitance per cm.

C’'= Fm™ (2.49)

Example 2.12

Solution

As the track width is of the same order of magnitude as the board thickness, we
must use Equation (2.48) to give

C' = EoEW
h

Fm™

8.854x10™? x5x3x107 _
= = Fm
2x10

=66 pFm™

=0.66 pFm™

2.9.6 ENERGY STORAGE

We can use capacitors as energy storage devices — on computer memory boards,
charged capacitors can supply power to the memory chips if the main supply fails.
So, we can use a capacitor to store energy, but how and where does a capacitor store
the energy?

As we have already seen, if the capacitor is holding a charge an electric field exists
in the dielectric. When the capacitor discharges through an external circuit, charges
appear to move across the dielectric, against the E field. As they move against the
field, work is done and energy is lost. When a discharged capacitor is connected to a
voltage source, the reverse takes place.

To find the stored energy, let us take a capacitor connected to a source of V volts.
If we increase the voltage by dV, the stored charge will increase by dQ. If these
changes occur in a time dt, the instantaneous current will be

,_d0
dr
o

=C 2.50
dr (2.50)
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The instantaneous power is given by

iV= CVd—V
dr

and so the energy supplied in raising the voltage from V to V + dV in time dr is
iV dt= CVd—V x dt
dr
or

energy = CVdV

Thus, the total energy supplied in raising the capacitor voltage from zero to V is

\4
energy = J.C vav
0
5V
v
2

0

_ %CVZ I 2.51)

Let us now find where the energy is stored. If we substitute for the capacitance in
Equation (2.51), we get

1 gyg, Xarea _ ,
energy =—————V
&=

2

= —§gyE, — X area
2 d

1
= Eeoe,E V x area (2.52)
We can find the energy per unit volume by dividing this equation by the volume of
the capacitor. So,

1 V  area
energy = —&£yE,E—X ——
2 d area

=% DE Jm™ 2.53)
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So, from Equation (2.53) it would appear that the electrostatic field stores the energy
and not the capacitor plates. Such a point of view is quite useful if we consider fields
in free-space in Chapter 9.

Example 2.13

A 10 pF capacitor has a potential difference between the plates of 50 V. Determine
the energy stored in the electrostatic field.

Solution

As the capacitance is quoted, we can use Equation (2.51) to give

energy = %CV2

=%><10><10‘6><502

=12.5m]

2.9.7 FoRcE BETWEEN CHARGED PLATES

We have already seen that charges exert a force on each other. We have also seen that
charged circular plates radiate electric flux in a cylinder. We should therefore expect
that two charged plates will exert a force on each other. To find this force, we could
adapt our model of flux distribution in a parallel plate capacitor, and then calculate
the force between the plates. However, there is a simpler method.

Let us consider the parallel plate capacitor shown in Figure 2.22. This capacitor
stores a certain amount of energy given by

1
energy = EDE X area X [

Now, there will be a force of attraction between the two plates. If we move the top
plate by a small amount d/, we do work against the attractive force. As we are moving
the top plate a very small amount, the E field will hardly vary. As the work done must
equal the change in stored energy, we can write

Fdl=%DExareax(l+dl)—%DE><area><l

- %DExareaxdl (2.54)

As D is the flux density, Equation (2.54) becomes

1
F=—yE
2‘/’
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FIGURE 2.22 Force between two charged plates.

or

F=%QEN (2.55)

where we have made use of Gauss’ law. Depending on the particular application, the
force between the two plates can be quite high.

Example 2.14

An electrostatic voltmeter consists of two square plates, of area 25cm?, separated
by a distance of 2cm in air. One of the plates is fixed, while the other is attached
to a spring mechanism that deflects a needle in front of a calibrated scale. The con-
stant of proportionality for the meter is 10° per 1 uN of force. Determine the angular
displacement of the needle if a potential of 500V is maintained across the plates.

Solution

The force between the two plates is given by Equation (2.55) as
F=LoEN
2

Thus,

500

1
F =—Xcapacitance X 500 X ———
2 2x10

=7x10°N

This corresponds to an angular displacement of 70°.

2.9.8 Low-FreQuUENCY EFFecTs AND DiSPLACEMENT CURRENT

So far we have only considered the effects of direct current (d.c.) on capacitors.
However, in electrical engineering we usually find capacitors in alternating current
(a.c.) circuits. So, what effect does a capacitor have on a.c. signals?
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Figure 2.23 shows a capacitor connected to an a.c. source. The voltage across the
capacitor varies with time and so, if we assume the source to be sinusoidal, we can write

v, () = Vi sinot (2.56)

where V), is the peak source voltage, and w is the angular frequency of the source.
Now, the capacitance is defined as the ratio of charge to potential difference
between the capacitor plates, i.e.,

.2
v
or
Q=Cv (2.57)
/(1)
v(8) = —1_ Capacitor
Vpk Sin ! @ —— C farad
(@)
Voltage
A and current
Capacitor
voltage
\\\\ Time
Capacitor
current
(b)

FIGURE 2.23 (a) Capacitor connected to an a.c. source and (b) relationship between
capacitor voltage and current.
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As the source is varying with time, we can write

q(1)=Cv, (1)

=C V sinwt

If we differentiate this equation with respect to time, we get

d
—q(1)=C Vywcoswt

dt
As current is the rate of change of charge with respect to time, we get

. d
i(t)= —qlt
s (1) cltq()
=C Vywcoswt

= C Vywsin(or+90°) (2.58)

So, when connected to an alternating source, the capacitor allows a current to
flow, with the current leading the voltage by 90°. (Figure 2.23b shows the relation-
ship between capacitor voltage and current.) We should note that the current flow
is directly proportional to the angular frequency of the source, i.e., the higher the
frequency, the larger the current flow. We can formalize this observation by defining
the reactance of the capacitance, X, as

=2 (2.59)

By combining this result with Equation (2.58) we get, after some rearranging,

. v, (1)
. ()= —=/90°
i (1) PR

This is remarkably similar to Ohm’s law, except that we are dealing with a.c. quanti-
ties, and there is a 90° phase shift involved.

So, when a capacitor is connected to an a.c. source, it provides a low resistance
path for a.c. signals. Of course, if there is a d.c. voltage across the capacitor, no
current will flow (if the capacitor is ideal). This makes capacitors very useful in
smoothing power rails (where there might be some variation in supply voltage) and in
connecting a.c. amplifier stages together — capacitors will let the a.c. signal through
but block any d.c. levels.
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Although this ‘circuits’ model indicates that a current will flow through a capaci-
tor connected to an a.c. supply, it does not explain how the current gets from one
plate to the other. Indeed, if the capacitor dielectric is ideal, there can be no flow of
electrons from one plate to the other. So, how does the current magically cross the
dielectric? To explain this we must use a field theory approach.

Figure 2.24a shows the state of the capacitor on positive half-cycles of the supply
voltage. As can be seen, positive charge has built up on the lower plate. As we saw ear-
lier in this section, these charges will radiate flux in upward and downward directions.
The flux that radiates upwards will tend to attract negative charges to the top plate and
repel any positive charges. Thus, in the positive half-cycle of the supply voltage, posi-
tive charges on the lower plate induce negative charges on the upper plate.

Let us now see what happens when the supply voltage has a negative half-cycle.
Negative charges on the bottom plate will attract positive charges to the top plate and
repel any negative charges. Thus, in the negative half-cycle of the supply voltage,
negative charges on the lower plate induce positive charges on the upper plate.

This study of charge build-up shows why there is a phase difference between the
supply voltage and the current — positive charges on one plate induce negative charges
on the other plate, and vice versa. It also shows that, although charges appear to flow
across the dielectric, they do not in reality — it is the electric flux that flows through the
dielectric. If the supply voltage varies with time, the electric flux will also vary with
time. Now, the units of electric flux are the same as charge, and so if we calculate the
rate of change of flux with time, we will get units of coulomb per second, or amps, i.c.,

rate of change of flux =

dy
t

From Gauss’ law we know that each unit charge radiates a unit of electric flux, i.e.,
w = 0. So, the rate of change of flux is the same as the rate of flow of charges in the
wires connected to the capacitor, i.e.,

do

rate of change of flux = ’
t

= capacitor current

+—Z— A»u

Electric
flux

Electric
flux

|| —— -—+
f—
|| — -—+
||—— -—+
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[T <7—‘}'
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FIGURE 2.24 (a) Charge distribution on positive half-cycles and (b) charge distribution on
negative half-cycles.
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‘ Electron flow (real current)

‘ Electric

flux 1 Displacement current

‘ Electron flow (real current)

FIGURE 2.25 Conversion of electron flow into displacement current.

As the units of dy/dr are the same as for current, we could regard dy/dt as a current.
In view of this, it is known as displacement current because it displaces charges from
the opposite plate of the capacitor.

So, this ‘fields’ model of a capacitor has explained why there is a phase shift between
the supply voltage and the current. It has also introduced us to the idea of displace-
ment current. This is very important when considering electromagnetic radiation, or
radio waves, and it is essential that readers are happy with the concept. Figure 2.25
summarizes the mechanism by which current apparently flows through a capacitor.

Example 2.15
A 22 pF capacitor is connected to a 4V a.c. supply which has a frequency of

100Hz. Determine the current taken from the supply. In addition, calculate the
displacement current in the capacitor dielectric.

Solution

The frequency of the supply is 100Hz, and so the angular frequency is

o =2nf
=2n x100

=200nrad s~

Now the reactance of the capacitor is given by

and so,

C

~ 200 x22 x10°°
= 7234 Q



56 Introduction to Electromagnetism

Thus, the supply current is

T 7234
—553mA

As the ‘real’ current changes to displacement current when it encounters the
dielectric, we can write

. d
displacement current = d—?

=553 mA

Of course, we can never get an ideal dielectric. Thus, there will also be some flow
of charge across the capacitor, i.e., there will be some ‘real’ current. We will meet
this again in Section 4.4.

2.9.9 CarAcITANCE AS REsIsTANCE TO FLux

When considering the production of fields in a capacitor, it is sometimes useful to
regard the capacitance as the resistance to the flow of electric flux. We have already
seen, in Equation (2.35) that

o=Cv (2.61)
and so, by applying Gauss’ law,
y=CV (2.62)
or
V=y 1 (2.63)
C

Equation (2.63) relates the potential across the capacitors to the electric flux by way of
the inverse of the capacitance. So, the higher the capacitance of a conductor system,
the easier it is to produce electric flux. Thus, we can regard the capacitance as a mea-
sure of the resistance to electric flux. (Although some readers may be wondering why
this point is being stressed, all will become clear when we compare electrostatics,
electromagnetism and electroconduction in Chapter 5.)
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Example 2.16

A 10 pF capacitor has a potential of 100V d.c. across its terminals. Determine the
flux through the capacitor. If the capacitance increases to 50 pF, determine the
new flux.

Solution
We have a 10 pF capacitor with a 100V across it. Thus, the flux through the
capacitor is (Equation (2.62)),
y=CV
=10 x 107 x100
=1mC

The capacitance is now increased to 50 pF, and so the new flux is

y=CV
=50 x 107° %100
=5mC

So, by increasing the capacitance we have increased the flux through the capaci-
tor. These fluxes are, of course, equal to the charge stored in the capacitor.

2.9.10 CoMBINATIONS OF CAPACITORS

In engineering, we often have to make something new out of existing components.
This is because manufacturers like to produce standard components to keep costs
down. When designing a circuit we often need a particular value of capacitor that is
not available from any source. We could pick a value close to the one we require, and
then physically alter the area of the capacitor to get the capacitance required by fill-
ing the top down. This requires the use of a capacitance meter, a file, a steady hand
and a great deal of patience! Although this can be done, it is not a very practical way
to get a non-standard value of capacitance. Instead, we can produce non-standard
capacitance values by combining standard values in parallel or series.

Figure 2.26a shows two capacitors, C; and C, in parallel. We require to find the
equivalent capacitance of this arrangement. Let us connect a d.c. source, V,, to the
capacitors. Now both capacitors will have the same voltage across them, but store
different charge. Thus, we can write

0, =0V, (2.64a)
and

0, =G, (2.64b)



58 Introduction to Electromagnetism

Vi V
# 1= e lf =
#l 1= #| 1=
C G
il QL Q1
ART-E o e s %
|1
s
v,
(@) (b)

FIGURE 2.26 (a) Parallel connection of capacitors and (b) series connection of capacitors.

If we replace the two capacitors by a single equivalent one of value C,, the charge
on the new capacitor, Q,, must be the same as on the parallel combination. Thus,

0,=CV, (2.65)

As Q, must be the sum of the individual charges, in order to be equivalent, we can
write

0=0+0,
or
CV,=CV,+(CV,
Thus,
C,=C+GC, (2.66)

So, we can increase capacitance by adding another capacitor in parallel with the
original.

Let us now consider a series combination of capacitors — Figure 2.26b. As before,
we will connect this combination to a d.c. source and replace the capacitors with an
equivalent one that will hold the same charge.

Now, let us assume that, when connected to the supply, a positive charge builds
up on the left-hand plate of C,. This charge induces an equal negative charge on the
right-hand plate of C,. The negative charge on this plate has to come from the left-
hand plate of C,, which leaves this plate positively charged. This positive charge on
the left-hand plate induces a negative charge on the right-hand plate of C,. As no
charge leaves the circuit, the two capacitors store the same charge, but have different
voltages across them. So, we can write

0=0,
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or
C]‘/] = C2V2 (267)
We are seeking to replace this series combination by a single capacitor of value C,

which must store a charge of Q, when connected to a supply of V.. Also, as the sup-
ply voltage must equal the individual voltage drops around the circuit, we can write

Vi=Vi+V,
and so,
o_0 0
G G G

The charge in the circuit is a constant given by

0=0=0,
and so,
0 _0 0
C, C G
which gives
1_1.1 (2.68)
¢ G G

So, we can decrease the capacitance by adding another capacitor in series with the
original.

Example 2.17

A 10 pF is connected in a circuit. What is the effect of placing a 1 uF capacitor in
parallel with it? What happens if the 1 uF is connected in series with the original?

Solution

We have a 10 uF capacitor, and a 1 pF connected in parallel. So, the total capaci-
tance is

C, =10+1
=11pF
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which indicates that the capacitance has barely altered.
If we now connect the 1 pF capacitor in series, we get a new capacitance of

r_1r.1
C, 10 1
=0.1+1
=1.1
ie.,
C,=0.91yF

So, the T uF capacitor dominates the 10 uF capacitor when it is in series with the
larger capacitor.

2.10 SOME APPLICATIONS

We will look at two applications of electrostatics: the electron gun and the electro-
static precipitator. Electron guns are often found in high-school physics experiments
to study diffraction of electrons amongst other experiments.

Figure 2.27a is a cathode ray tube, CRT, that uses an electron gun (Figure 2.27b)
to produce an image on the screen. (Although such technology has now been largely
superseded by LCD and plasma screens, electron guns are still used in physics exper-
iments to study electrons.) The electron gun is capable of accelerating electrons to
speeds approaching that speed of light. At the very rear of the device is a heater that
causes the cathode to emit electrons. (These electrons are thermally excited because
the cathode reaches temperatures in excess of 1800°C. This is thermionic emission.)
Of course, if the gun contains air, the electrons will lose momentum and may fail
to reach the target. Thus, it is important that the gun has a vacuum inside and this is
usually done by burning magnesium in the tube after it has been sealed.

Now for some simple calculations, let us assume that the anode is grounded and that
the cathode is at a negative voltage of V volt. Let us also assume that the distance between
the anode and cathode is x metre. When the cathode produces electrons by thermionic
emission, they are accelerated by the E field. So, the force acting on one electron is

F=gE (2.69)

This must be equal to the mass of the electron, m, times the acceleration due to the
field. Thus,

F=qgE =ma
giving

a=1E (2.70)
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FIGURE 2.27 (a) A typical cathode ray tube (CRT) and (b) basic structure of the electron gun.

If we assume that the electrons are initially at rest, we can find their final velocity
using

We can rearrange this equation to give

%mv2 =qV 2.71)
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FIGURE 2.28 Schematic diagram of a typical electrostatic precipitator.

Equation (2.71) is simply a form of the conservation of energy — the left-hand side
is the increase in kinetic energy, while the right-hand side is the electron energy in
electron-volts. As an example, let us take a cathode voltage of —20kV. As the mass of
an electron is 9.1 X 1073'kg, this gives a final velocity of 8.4 X 10’m s~! — quite fast!

We can also find electrostatics at work in industry. The air in a factory often
contains oil and dust particles. Although some form of vacuum cleaner can be used,
the maintenance costs are quite high. An alternative is to ionize the particles and
use electrostatics to attract them to charged metal plates where they can be removed.
Such a device is the electrostatic precipitator, and Figure 2.28 shows the schematic
diagram of a typical example.

As can be seen from the figure, the precipitator basically consists of a wire placed
between two metal plates. In operation, the wire is maintained at a large negative
potential, typically —50kV, with respect to the plates. Under these conditions, the
E field close to the wire is large enough to ionize the air. The negative field repels
the freed electrons, while the wire attracts the positive charges. So, the electrons are
accelerated towards the outer plates.

Now, if there are dust particles between the plates, the free electrons will attach them-
selves to the dust, so making them negatively charged. Thus, the positively charged plates
attract the negatively charged particles, so removing them from the atmosphere.

The precise analysis of this situation is complicated because the plates are not
coaxial to the wire. In this case, we must plot the electrostatic field strength between
the plates to find out what happens to the dust particles. Under such circumstances, it
is probably easier to build a prototype and experiment.

2,11 SUMMARY

We started this chapter by examining a fundamental law relating to the force between
point charges — Coulomb’s law. We then went on to develop the ideas of electric flux,
electric field and potential. Again, we were only concerned with point charges. The
relevant formulae are summarized here:

F= %r 2.72)
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D= 47‘_1; r (273)

E= ﬁr 2.74)

V= 4& 2.75)
mEr

We then considered certain charge distributions, line charges, surface charges and
volume charges. In all of these cases, we were able to apply Gauss’ law to simplify
the analysis.

We next examined various types of capacitor: parallel plate, coaxial cable, twin
feeder, wire over a ground and microstrip lines. In all cases, we chose to ignore the
effects of the field at the edges of the conductors. The capacitances are reproduced here:

£pE, X area
05 2T R

Parallel plate C= 4 (2.76)
. , 2MEHE, )

Coacxial cable = 2.77)

In(b/a)
Twin feeder c= "  _Fm’! 2.78)

In ((d —a)/ a) .
. , 2T[80 —1
Wire over ground C'= ——Fm 2.79)
ln((d/Z— a)/a)

Microstrip C= SOZ’W Fm™ (2.80)
or ' 2nELE, X area 4 2.81)

In(hiw)

We also encountered the fundamental formula:

0=CV (2.82)

We then went on to consider the storage of energy by a capacitor. We found that the
energy can be regarded as either stored on the capacitor plates or stored in the elec-
trostatic field between the plates. This is an important concept to grasp as it shows
the equivalence between a field theory approach and the more familiar ‘circuits’
approach. The stored energy is given by
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energy = %CVZ J (2.83)

or
1 =
energy = EDE Jm (2.84)

The question of how the current ‘flowed’ through an ideal capacitor was then
examined. This introduced us to the idea of displacement current and showed us that
the ‘real’ current converted to ‘displacement’ current and back again as it crossed the
dielectric. This is a very important point, which we cannot explain by the ‘circuits’
approach. Indeed, we found that we can regard the capacitance as the ‘resistance’ to
the flow of flux. This acts as a link between the fields and circuits approaches.

We also saw that the reactance of a capacitor is given by

1
2nfC

(2.85)

Cc

with the capacitor current leading the supply voltage by 90°.

Next, we examined parallel and series combinations of capacitors. We saw that
capacitance can be increased by adding another capacitor in parallel with the original
and decreased by adding series capacitance.

We concluded this chapter with a brief examination of two applications of electro-
statics: electron acceleration in an electron gun and electrostatic precipitation. In the
first example, we saw that electrons can be accelerated to very high velocities by a
potential difference of, typically, 20kV. Electrostatic precipitators also use potentials
of this order to attract dust and smoke particles to metal plates, so cleaning the air.



3 Electromagnetic Fields

When we considered electrostatics in the previous chapter, we started with the force
between isolated point charges. This introduced us to the ideas of flux density and
electric field strength. Now that we are considering magnetism, we can also start
at the same point — isolated north or south monopoles — and Section 3.1 develops
some basic ideas based around this concept. However, no one has yet found isolated
magnetic poles and so we will quickly encounter the magnetic field generated by
a current-carrying elemental wire in Section 3.2 — hence the term electromagne-
tism. Once we have grasped this idea, we will leave magnetic monopoles behind.
(Of course, if someone does find magnetic monopoles, we will have to rewrite all the
textbooks — this one included!)

3.1 SOME FUNDAMENTAL IDEAS

At about the same time that Coulomb was examining the force between isolated
charges, he was also experimenting with magnetism (1785). In common with electro-
statics, he found that the force between two magnetic poles decreases as the inverse
of the square of the distance separating them, i.e.,

F= ’;‘ ’f’; r 3.1)
where
F is the vector force between the two poles (N)
p, and p, are the strengths of the magnetic poles (Wb)
k is a constant of proportionality
r is the distance between two poles (m) and
r is the unit vector acting in the direction of the line joining the two charges

This is the exact parallel of Coulomb’s law as applied to isolated point charges.
The force is repulsive if the poles are alike and attractive if the poles are dissimilar
(Figure 3.1).

We can extract a factor of 4x from the constant k to give

J4V%
F=""“r (3.2
dnur’

where u is the permeability — a material property. If we use the SI system of units, the
force is in Newton if the pole strengths are in Weber (named after Wilhelm Eduard
Weber, 1804-1891, the German physicist noted for his study of terrestrial magne-
tism), # is in H m~" and r is in metre. The reason for the choice of units for y will
become clear when we consider inductance in Section 3.11.
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FIGURE 3.1 Two separate magnetic monopoles in free-space.

It is now a simple matter to introduce the idea of magnetic field strength in the
same way that we introduced electric field strength. The force on the pole p, is

F=pH 3.3)

where H is the magnetic field strength due to pole p, given by

P
H=—"— 34
4rt‘ur2 r G4

with units of N W-1,

If we adapt Gauss’ law to magnetostatics, we can say that the magnetic flux emit-
ted by a pole is equal to the strength of the pole. Thus, we can define the magnetic
flux density as

B= 41:;2 r (.5)

with units of Wb m=2,
We can combine Equations (3.4) and (3.5) to give

B=uH (3.6)

In common with electrostatics, the value of the constant of proportionality (in this
case the permeability) is dependent on the material. When working with magnetism,
it is common practice to work with the permeability relative to free-space. Thus,

H
Ho

i =

where y, is the permeability of free-space with value 4 X 107 H m~!. Unfortunately,
the relative permeability of a magnetic material varies according to the flux density
so we shouldn’t really refer to it as a material constant. (We will meet the relative
permeability again when we consider magnetic materials in Chapter 7.)
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So, we have developed a model in which magnetic flux emanates from an isolated
pole (assumed to be a point source) in a radial direction. This model is identical to
that adopted for isolated point charges in Chapter 2. However, we must use cau-
tion from this point onwards as no one has yet found isolated magnetic monopoles.
Instead, we must adapt our model to current-carrying wires.

Example 3.1

A single 10 pWb magnetic monopole is situated in air. Calculate the magnetic field
strength at a distance of 0.5 m from the monopole. In addition, find the flux density
and the force on an identical monopole at the same distance.

Solution

We have a single monopole of strength 10 uWb situated in air. Now, the magnetic
field strength is (Equation (3.4))

H = Lz r
4nur
and so,
10 x10°°

= r
4nx4nx1077 x 0.5

= 2.53rN Wb in a radial direction

From Equation (3.6), we have
B=uH
And so,

B = 4nx107 x2.53r
=32 x 107

=3.2rpWb m™ in a radial direction

If we place an identical monopole at 0.5m from the original, the force on this
monopole is

F =p,-H
=10x107°x2.53r

=2.53ruN (repulsive)

So, even if we have low-strength monopoles, the field strength can be quite high
(2.53N Wb). However,